
PYTHON FOR HPC:
BEST PRACTICES

drhgfdjhngngfmhgmghmghjmghfmf

WILLIAM SCULLIN
Assistant Computational Scientist
Leadership Computing Facility
Argonne National Laboratory

May 4th, 2017
ALCF Computational Performance Workshop

“PEOPLE ARE DOING HIGH PERFORMANCE
COMPUTING WITH PYTHON... HOW DO WE STOP
THEM?”

- SENIOR PERFORMANCE ENGINEER

WHY THIS TALK?
§ Python is popular
§ It’s becoming the de facto language

for data science
§ It’s behind a large number of

scientific workflows
§ It’s not uncommon for prototyping

or even implementing production
software

§ We tend to make a lot of mistages

WHY PYTHON?
§ If you like a programming paradigm, it’s supported
§ Most functions map to what you know already
§ Easy to combine with other languages
§ Easy to keep code readable and maintainable
§ Lets you do just about anything without changing languages
§ The price is right - no license management
§ Code portability
§ Fully Open Source
§ Very low learning curve
§ Commercial support options are available
§ Comes with a highly enthusiastic and helpful community

WHY NOT PYTHON?
§ Performance is often a secondary concern for developers and distributions

– Most developers aren’t in HPC environments
– Most developers aren’t in science environments
– Many tools were designed to work best in generic environments

§ Language maintainers favor consistency over compatibility
– Backwards compatibility is seldom guaranteed

§ Low learning curve
– It’s easy to develop a code base that works, but won’t scale

PYTHON 2 OR 3?

6

Python was originally developed as a system scripting language for the Amoeba distributed operating system
and has been developing ever since, with many backwards-incompatible changes made in the name of progress
without too much delay on adoption. However, the changes from Python 2 to Python 3 were sufficiently radical
that adoption has been slow going. That said:

§ Python 3 is the future – and the future is here
§ All major libraries now work under Python 3.5+
§ Almost all popular tools work with Python 3.5+
§ Python 3’s loader and more of the interpreter’s internals are written in Python

§ This makes loading more I/O intensive which presents challenges for scaling
§ It also makes it easier to write alternative interpreters that can be faster than CPython

WHERE DO WE WANT TO SPEND OUR TIME?

7

Share of execution tim
e

HOW DOES CPYTHON WORK?

HOW DOES CPYTHON WORK?

HOW DOES CPYTHON WORK?

THREADS AND PYTHON: A WORD ON THE GIL

To keep memory coherent, Python only allows a single thread to run in the interpreter's memory space at
once. This is enforced by the Global Interpreter Lock, or GIL.

The GIL isn’t all bad. It:
§ Is mostly sidestepped for I/O (files and sockets)
§ Makes writing modules in C much easier
§ Makes maintaining the interpreter much easier
§ Makes for any easy topic of conversation
§ Encourages the development of other paradigms for parallelism
§ Is almost entirely irrelevant in the HPC space as it neither impacts MPI or threading within compiled

modules

For the gory details, see David Beazley's talk on the
GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU

NUMPY AND SCIPY
NumPy should almost always be your first stop for performance
improvement. It provides:

§ N-dimensional homogeneous arrays (ndarray)
§ Universal functions (ufunc)
§ built-in linear algebra, FFT, PRNGs
§ Tools for integrating with C/C++/Fortran
§ Heavy lifting done by optimized C/Fortran libraries such as Intel’s MKL

or IBM’s ESSL

SciPy extends NumPy with common scientific computing tools
§ optimization
§ additional linear algebra
§ integration
§ interpolation
§ FFT
§ signal and image processing
§ ODE solvers

Problems arise when NumPy isn’t well built…

NUMPY AND SCIPY
Optimized and built with MKL via Spack Installed via pip

The test on a KNL system:
>>> import timeit
>>> sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100))') for i in range(100)])/100.0

119.68859601020813s 499.9269280433655s

A WORD FROM OUR SPONSORS: CANNED PYTHON
At this point in history, there are few reasons for the average user to manually cobble together a Python stack
for themselves on an x86_64 system. All options are relatively equivalent with unique advantages and
disadvantages to weigh.

We will be making two options available on Theta:
§ The Intel Python distribution
§ Optimized builds of Python built with LLNL/Spack via modules

You may also wish to consider a commercial distribution:
§ Continuum Analytics Anaconda
§ Enthought Canopy

Both Intel Python and Continuum Analytics Anaconda build on the Conda package and environment
manager. Enthought Canopy relies on virtualenv for environment management.

Think of Conda as being like rpm or deb packages – easy to install binary packages, though managing
dependencies becomes potentially problematic.

Think of LLNL/Spack+virtualenv as being like BSD or MacPorts – highly customizable, highly transparent, but
potentially a lot of time spent compiling.

WHY MPI?
o It is (still) the HPC paradigm for inter-process communications

• Supported by every HPC center and vendor on the planet
• APIs are stable, standardized, and portable across platforms and languages
• We’ll still be using it in 10 years…

o It makes full use of HPC interconnects and hardware
• Abstracts aspects of the network that may be very system specific
• Dask, Spark, Hadoop, and Protocol Buffers use sockets or files!
• Vendors generally optimize MPI for their hardware and software

o Well-supported tools for development – even for Python
• Debuggers now handle mixed language applications
• Profilers are treating Python as a first-class citizen
• Many parallel solver packages have well-developed Python interfaces

o Folks have been writing Python MPI bindings since at least 1996
• David Beazley may have started this…
• Other contenders: Pypar (Ole Nielsen), pyMPI (Patrick Miller, et al), Pydusa (Timothy H. Kaiser), and

Boost MPI Python (Andreas Klöckner and Doug Gregor)
• The community has mostly settled on mpi4py by Lisandro Dalcin

15

A BOTTLENECK AT THE START: LOADING PYTHON
When working in diskless environments or from shared file systems, keep
track of how much time is spent in startup and module file loading. Parallel
file systems are generally optimized for large, sequential reads and writes.
NFS generally serializes metadata transactions. This load time can have
substantial impact on total runtimes.

MPI4PY

§ Pythonic wrapping of the system’s native MPI
§ provides almost all MPI-1,2 and common MPI-3 features
§ very well maintained
§ distributed with major Python distributions
§ portable and scalable

§ requires only: NumPy, Cython, and an MPI
§ used to run a python application on 786,432 cores
§ capabilities only limited by the system MPI

§ http://mpi4py.readthedocs.io/en/stable/

HOW MPI4PY WORKS...

§ mpi4py jobs are launched like other MPI binaries:
§ mpiexec –np ${RANKS} python ${PATH_TO_SCRIPT}

§ an independent Python interpreter launches per rank
§ no automatic shared memory, files, or state
§ crashing an interpreter does crash the MPI program
§ it is possible to embed an interpreter in a C/C++ program and launch an

interpreter that way
§ if you crash or have trouble with simple codes

§ CPython is a C binary and mpi4py is a binding
§ you will likely get core files and mangled stack traces
§ use ld or otool to check which MPI mpi4py is linked against
§ ensure Python, mpi4py, and your code are available on all nodes and

libraries and paths are correct
§ try running with a single rank
§ rebuild with debugging symbols

MPI4PY STARTUP AND SHUTDOWN
§ Importing and MPI initialization

§ importing mpi4py allows you to set runtime configuration options (e.g. automatic
initialization, thread_level) via mpi4py.rc()

§ by default importing the MPI submodule calls MPI_Init()
§ calling Init()or Init_thread()more than once violates the MPI standard
§ This will lead to a Python exception or an abort in C/C++
§ use Is_initialized() to test for initialization

§ MPI_Finalize() will automatically run at interpreter exit
§ there is generally no need to ever call Finalize()
§ use Is_finalized() to test for finalization if uncertain
§ calling Finalize() more than once exits the interpreter with an error and may crash

C/C++/Fortran modules

MPI4PY AND PROGRAM STRUCTURE
Any code, even if after MPI.Init(), unless reserved to a given rank
will run on all ranks:

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
mpisize = comm.Get_size()

if rank%2 == 0:
print(“Hello from an even rank: %d” %(rank))

comm.Barrier()

print(“Goodbye from rank %d” %(rank))

MPI4PY AND DATATYPES
§ Python objects, unless they conform to a C data type, are pickled

§ pickling and unpickling have significant compute overhead
§ overhead impacts both senders and receivers
§ pickling may also increase the memory size of an object
§ use the lowercase methods, eg: recv(),send()

§ Picklable Python objects include:
§ None, True, and False
§ integers, long integers, floating point numbers, complex numbers
§ normal and Unicode strings
§ tuples, lists, sets, and dictionaries containing only picklable objects
§ functions defined at the top level of a module
§ built-in functions and classes defined at the top level of a module
§ instances of such classes whose __dict__() or the result of

calling __getstate__() is picklable

MPI4PY AND DATATYPES
§ Buffers, MPI datatypes, and NumPy objects aren’t pickled

§ transmitted near the speed of C/C++
§ NumPy datatypes are autoconverted to MPI datatypes
§ buffers may need to be described as a 2/3-list/tuple
§ [data, MPI.DOUBLE] for a single double
§ [data,count,MPI.INT] for an array of integers
§ custom MPI datatypes are still possible
§ use the capitalized methods, eg: Recv(), Send()

§ When in doubt, ask if what is being processed can be represented as memory
buffer or only as PyObject

MPI4PY: COLLECTIVES AND OPERATIONS

§ Collectives operating on Python objects are naive
§ For the most part collective reduction operations on Python

objects are serial
§ Casing convention applies to methods:

§ lowercased methods will work for general Python objects
(albeit slowly)

§ uppercase methods will work for NumPy/MPI data types at
near C speed

MPI4PY: PARALLEL I/O

§ All 30-something MPI-2 methods are supported
§ conventional Python I/O is not MPI safe!

§ safe to read files, though there might be locking issues
§ write a separate file per rank if you must use Python I/O

§ h5py 2.2.0 and later support parallel I/O
§ hdf5 must be built with parallel support

§ make sure your hdf5 matches your MPI
§ h5pcc must be present
§ check things with: h5pcc -showconfig
§ hdf5 and h5py from Anaconda are serial!

§ anything which modifies the structure or metadata of a file must be done
collectively

§ Generally as simple as:
f = h5py.File('parallel_test.hdf5', 'w',

driver='mpio', comm=MPI.COMM_WORLD)

ENUMERATED ADMONISHMENTS

1. Benchmark as you develop
2. Profile
3. Ask if you can do an operation with NumPy or SciPy
4. Never mix forking and threading – ie: Python multiprocessing
5. Check the build configurations of your important Python modules
6. Beware of thread affinity:

aprun -n … -N ... –e KMP_AFFINITY=none -d ... -j ...
7. Watch your data types
8. Avoid Python threading
9. Watch startup times carefully
10. Google – someone else has likely already implemented the solution

you seek
11. Python distutils is always the wrong answer

Script CPython Pypy

Serial / 1
Rank

8 Ranks Serial / 1
Rank

8 Ranks

builtins_mpi_pi 3.677074 1.065756 0.313690 0.127450

builtins_pyobj_mpi_pi 4.016020 1.092005 0.304663 0.110477

numba_mpi_pi 0.416354 0.424889 n/a n/a

numpy_mpi_pi 0.666984 0.154728 1.962236 0.556384

threads 7.450568 n/a 0.344480 n/a

